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Overview 
To enhance detection and interdiction of radiological or nuclear material trafficking between primary 
POEs into the US, The Department of Homeland Security is faced with highly variable smuggling 
pathways through expansive geographic regions. The goal of this project is to test an approach to 
estimating likely pathways, as well as the probability of encounter along any given route. 

Our goal is to test the feasibility of a novel approach based on assessing the adversary’s perception of 
discovery likelihood over a broad geographic region, and using that result to estimate an “aversion force 
field” over the same region. The aversion force field is derived from analogies based on the physics of 
electric charges. Combining the aversion force with the intention of an adversary to reach their 
destination, generates a route that is consistent with both the adversary’s intention and their aversion 
to deterrent measures. 

Phase I is exploratory. Its goal to demonstrate the feasibility of the approach. This report describes 
progress in an essential part of the approach, specifically, to implement and couple two principle model 
components: (1) the Bayesian network model of an adversary’s perception of discovery likelihood; and 
(2) the physics-inspired aversion field model. The objective is to show that the field produced from the 
two components is plausible and consistent with the assumptions and the data. 

Figure 1 illustrates the workflow of this phase to the present stage. After collecting preliminary data and 
implementing each of the two model components, they were separately evaluated. Following this step, 
the output from the Bayesian network was input to the aversion field solver, and the combined results 
evaluated as reported here. 

 

 

Figure 1. The development workflow for demonstrating plausibility of the aversion field solution. 



Aversion Force-Field Feasibility 
 

2 
 

 

Design, Implementation, and Evaluation of the Bayesian Network Model 
The initial Bayesian network assumes infiltration on foot by an adversary whose aim is to reach their 
destination without being observed. It is based on U.S. Army Field Manual FM 7-93.1 The doctrine 
described in the manual holds that infiltrators will prefer surroundings that make them hard to observe 
and unlikely to encounter. 

Based on this principle, a preliminary Bayesian model was developed that requires no initial subject 
matter input, relying only on geographic terrain and population features. A network diagram of the 
model is shown in Figure 2. We assumed a uniform, low-level population density for the sparsely-
populated test region. The other input grids used for the initial test are shown in Figure 3. 

 

 

Figure 2. The preliminary Bayesian network model based on US Army Field Manual 7-93. 

 

 

Figure 3. The input grids for the Bayesian network. From left to right: percent slope, roughness, and land cover category. 

The output of the Bayesian network based on these inputs is shown in Figure 4. From the legend, one 
can see that the results largely partition the test region in to moderately low (~30%) and moderately 

                                                           
1 United States Army Field Manual 7-93 Long-Range Surveillance Unit Operations. 
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high (~70%) discovery probabilities. This is likely the result of strong correlations over broad regions 
between the two factors derived from terrain elevation (percent slope and roughness), and ground 
cover type. 

 

Figure 4. The output of the Bayesian network model (probability of discovery) over the geographic test region. 

Design, Implementation, and Evaluation of the Aversive Force Field Model 
The aversion force field model is based on an analogy between the presence of deterrent features in a 
geographic landscape, and repulsive electric fields resulting from the spatial distribution of electric 
charges. In electrostatics, a complex distribution of charge over space can be represented by a charge 
density field which is the source of an electric potential energy landscape. The direction and magnitude 
of the electric force at any point in the potential field is proportional to the negative gradient of the 
potential at that point. In other words, a charge placed in the potential field will seek a lower potential 
energy in the direction of steepest descent, the way a ball placed on a hill will roll downward. 

The differential equation that defines the electric potential in terms of the charge source density is 
Poisson’s Equation: 

∇2∅ =  −𝑘𝑘𝑘𝑘 (1) 

where ∅ is the potential field,  ∇2 is the differential Laplacian operator, and ρ is the charge density field. 
The constant k is an arbitrary, positive scale factor that determines the relative strength of the potential 
field given the magnitude of the charge density. For our purposes, we set k=1 without loss of generality. 

Given the potential ∅ from Poisson’s equation, the force at a specific location 𝑥⃗𝑥 is given by 𝐹⃗𝐹 =–𝑞𝑞∇∅ 

where q is the pseudo-charge assigned to an adversary agent of a given type. 

Equation 1 must be converted to a discrete form to solve numerically on a grid. The usual method is to 
substitute finite differences for differentials in the Laplacian operator. Using a symmetric finite 
difference stencil in two dimensions the difference form of Poisson equation becomes: 

∇2∅ = −𝑘𝑘𝑘𝑘 →  ∅𝑖𝑖+1,𝑗𝑗 −2∅𝑖𝑖,𝑗𝑗+∅𝑖𝑖−1,𝑗𝑗

𝛿𝛿𝛿𝛿𝑖𝑖,𝑗𝑗
2 + ∅𝑖𝑖,𝑗𝑗+1−2∅𝑖𝑖,𝑗𝑗+∅𝑖𝑖,𝑗𝑗−1

𝛿𝛿𝛿𝛿𝑖𝑖,𝑗𝑗
2 = −𝑘𝑘𝜌𝜌𝑖𝑖,𝑗𝑗  (2) 
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The (i,j) indices in Equation 2 label the centers of the cells of the grid, while 𝛿𝛿𝛿𝛿𝑖𝑖,𝑗𝑗 and 𝛿𝛿𝛿𝛿𝑖𝑖,𝑗𝑗 are the 
approximate local dimensions of cell (i,j) in the x and y directions respectively. The local cell widths are 
approximate, even on a regular geographic grid, as a result of geodesics. 

The difference expressions of Equation 2 are applied to each cell of the grid forming a sparse (M×N)2 
matrix, where M and N are the number of cells in the x and y directions respectively. Because the 
number of equations grows as the square of the number of cells, the computational resources required 
to solve the equation grows quickly with the grid size. 

The matrix equation to be solved is 

𝐷𝐷𝐷𝐷 =  −𝑅𝑅 (3) 

where D is the matrix of differences, U is the matrix of potential field values, and R is the matrix of 
source values. Boundary conditions representing values, either of ∅ or its normal derivative, are 
required. In the discrete formulation, this translates to either a set of given values for U, or a set of given 
differences adjacent to the left, right, top, and bottom cells of the grid. These conditions are embedded 
in the finite difference matrix D. 

There are a number of ways to solve Equation 3. We have used two different approaches. The most 
straightforward is the “direct” method. This method attempts to find the inverse of D directly. The 
method is costly for equations involving large sparse matrices. Our attempts to use this method began 
to fail when the matrix became larger than approximately 300 x 300 cells. Iterative methods are another 
class of solvers. At the time of this report, iteratives methods appeared to be more successful for 
solutions on large grids. 

We require large grids to ameliorate the influence of fixed boundary conditions when charge sources 
are near the boundaries, as boundary conditions in that case dominate the solution for the potential in 
the interior. In our application, we expect to have substantial source values everywhere in the region of 
interest. 

We have found that adding rows and columns of empty buffer cells, whose extent is approximately 
equal to that of the grid in each dimension, are necessary to avoid such effects when charges are near 
the edge of the solution region. This finding is consistent with the application of such methods to 
electrostatic boundary problems appearing in the literature. 

The need for large buffer zones results in grids that are nearly an order of magnitude larger than the 
problem region. This in turn implies a matrix sizes nearly two orders larger than the number of cells 
required for grid covering the region of interest alone. Such rapidly unfavorable scaling drives the 
requirement for employing the most computationally efficient methods to solve for the potential in the 
aversion force model. 

A simple test of the field solution is shown in Figure 5. On the right, the line charge shown in red 
generates the potential field on the left. The force arrows superimposed on the right are derived from 
the potential. One can easily see that large forces directed away from the line charge appear near the 
source and diminish with distance. Sampling the potential shows it is consistent with to the 1/𝑟𝑟 force 
potential law for electrostatics. In application, the line charge would represent an extended deterrent 
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feature such as border fence. An adversary would feel the force very strongly near the fence, but the 
effect would diminish quickly with distance. 

Integrated Bayesian Network and Aversion Force Calculation 
To generate an aversion force field, we input the probability field of Figure 4 as the source in the matrix 
equation (Equation 3). For test purposes, we first coarsened the source grid to produce the grid pictured 
in Figure 6. 

 

Figure 5. A simple test of the force calculation. On the right, the charge in red generates the potential field at the left. The force 
arrows on the right are derived from the potential. 

The potential and force fields are shown superimposed in Figure 7. One can see from the figure that the 
force field is most intense near the maxima of the potential field as expected. Figure 8 shows the force 
field superimposed on the source field. Here it is clear that an adversary that finds themselves in a 
region where the discovery probability is high would feel a strongly aversive force directed from their 
present position to one where the probability of discovery is much lower. 

 

 

Figure 6. A coarsened grid of source values for the field solution test. 
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Agent Movement Test 
The next step in the project is to develop the agent model, the last of the critical model components, 
and integrate it with the Bayesian network and force-field models to demonstrate feasibility of the 
overall approach. 

Although not prepared to fully develop and integrate the agent model at this stage, it is worthwhile to 
implement a portion of the agent model to show that aversion fields derived from a discovery likelihood 
source produce plausible agent movement. For this purpose we have implemented an agent “mover”. 
This is a sub-model that computes the force at an agent’s location and moves it one step, that is, 
updates the agent’s position and velocity. 

 

Figure 7. The potential field derived from the source grid with force vectors superimposed. 

 

 

Figure 8. Force-field vectors superimposed on the source field. 

The force on an agent at any point in the landscape is the sum of two forces: (1) the “intention” force, 
and (2) the aversion force. The computation of the aversion force we have just described and 
demonstrated. The intention force is the force that would attempt to restore the intended direction and 
speed of movement of an agent if their current velocity were different. The complete influence of these 
forces on agent motion is governed by Equations (4-7).  

𝑎⃗𝑎𝑎𝑎(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓𝛿𝛿𝐴𝐴𝑎𝑎(𝑥𝑥(𝑡𝑡))  (4) 
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𝑎⃗𝑎𝑖𝑖(𝑡𝑡) = (𝑣𝑣0����⃗ (𝑡𝑡)−𝑣𝑣�⃗ (𝑡𝑡))
𝜏𝜏

   (5) 

𝑎⃗𝑎(𝑥𝑥, 𝑡𝑡) = 𝑎⃗𝑎𝑖𝑖(𝑥𝑥, 𝑡𝑡) + 𝑎⃗𝑎𝑎𝑎 (𝑥𝑥, 𝑡𝑡)  (6)  

𝑣⃗𝑣(𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝑣⃗𝑣(𝑡𝑡) + 𝑎⃗𝑎(𝑥𝑥, 𝑡𝑡)𝛿𝛿𝛿𝛿 (7) 

The acceleration due to aversion is given by Equation 4, where 𝑓𝑓𝛿𝛿𝐴𝐴��⃗ 𝑎𝑎 is analogous to  𝑞𝑞
𝑚𝑚
𝐸𝐸�⃗  in physics 

where 𝐸𝐸�⃗  is the electric field vector. In physics, the charge-to-mass ratio q/m describes the ability of an 
electric field of a given strength to deflect a charged particle from its current direction. Increasing the 
charge q increases the acceleration for a given field strength, whereas increasing the mass m raises the 
particle’s inertia making it harder to deflect. In our application, 𝐴𝐴��⃗ 𝑎𝑎 is analogous to the electric field. We 
replace q/m with 𝑓𝑓𝛿𝛿 which we call the deflection factor. 

In Equation 5, the acceleration due to the agent’s desire to recover its goal direction and intended speed 
is defined in terms of the difference between its current velocity 𝑣⃗𝑣 and its intended direction and speed 
𝑣𝑣0����⃗  divided by an arbitrary reaction time τ. 

Equation 6 is the total acceleration which, when applied in Equation 7, updates the agent’s velocity, 
which in turn leads to a displacement of the agent within the same time interval. 

Implementing these equations in a prototype agent mover, we have generated ten paths by starting 
agents at locations spaced along the southern boundary of Figure 8, with the destination of each agent 
being a point centered on the top boundary. For this test, we have set the deflection factor to 2, and the 
reaction time to one time step. The intended speed is 5 km/hour, and the time step is 15 minutes. 

The results are shown in Figure 9. Here we have changed the color palette from that in Figure 7 to make 
subtle differences in the potential field easier to see. We have also added an internal border for 
purposes of illustration. 

We see that the contours of the aversion potential lead agents introduced near the minimum potential 
on the left (west) to move toward the low potential region there, and then to funnel along that portion 
of the landscape toward their common destination. 

On the right (east), where the potential appears high to the agent’s left, agents introduced on that side 
prefer to move right where the potential appears relatively lower. As they attempt to move northwest 
toward their common destination, they encounter very high aversion potentials and are therefore 
forced to move northeast. 

These movements are consistent with the assumptions of the model and are considered to be very 
plausible. Were these results based on a carefully calibrated model and input data, they would suggest 
that, at narrow portions of the western border, and at somewhat broader segments of the eastern 
border, interdiction might be favorable. 
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Figure 9. The aversion potential field with the trails produced by ten agents moving across the aversion field towards a common 
destination centered on the top boundary. 

Summary 
In this report, we described an initial implementation of two main components of the PrEP model 
framework: (1) the Bayesian network model of an adversary’s perceived discovery risk, and (2) an 
aversion force-field component based on the physics of electrostatics, where discovery likelihood is the 
source for a repulsive electrostatic potential field. We have also introduced equations of motion for 
agents moving across a landscape towards an intended goal, while under the influence of geographically 
distributed aversive forces. 

We have shown how coupling the Bayesian network and the aversion force component produces an 
aversion force field whose magnitude and direction plausibly represent the aversive influence that an 
adversary agent would feel when placed at some location in the discovery likelihood field. 

We have also generated agent pathways through the aversion fields presented based on the agent 
equations of motion. The generated paths appear to be plausible in the context of the given aversion 
force field. We conclude that the formulation of the three elements combined thus far: Bayesian 
aversion likelihood model, aversion force field model, and agent equations of motion, suggest the 
approach at this stage is feasible. Planning for a more exacting demonstration is presently underway. 
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